Altered Calcium Homeostasis Does Not Explain the Contractile Deficit of Diabetic Cardiomyopathy
نویسندگان
چکیده
OBJECTIVE This study examines the extent to which the contractile deficit of diabetic cardiomyopathy is due to altered Ca(2+) homeostasis. RESEARCH DESIGN AND METHODS Measurements of isometric force and intracellular calcium ([Ca(2+)](i), using fura-2/AM) were made in left ventricular (LV) trabeculae from rats with streptozotocin-induced diabetes and age-matched siblings. RESULTS At 1.5 mmol/l [Ca(2+)](o), 37 degrees C, and 5-Hz stimulation frequency, peak stress was depressed in diabetic rats (10 +/- 1 vs. 17 +/- 2 mN/mm(2) in controls; P < 0.05) with a slower time to peak stress (77 +/- 3 vs. 67 +/- 2 ms; P < 0.01) and time to 90% relaxation (76 +/- 7 vs. 56 +/- 3 ms; P < 0.05). No difference was found between groups for either resting or peak Ca(2+), but the Ca(2+) transient was slower in time to peak (39 +/- 2 vs. 34 +/- 1 ms) and decay (time constant, 61 +/- 3 vs. 49 +/- 3 ms). Diabetic rats had a longer LV action potential (APD(50), 98 +/- 5 vs. 62 +/- 5 ms; P < 0.0001). Western blotting showed that diabetic rats had a reduced expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a, with no difference in expression of the Na(+)/Ca(2+) exchanger. Immunohistochemistry of LV free wall showed that type I collagen was increased in diabetic rats (diabetic 7.1 +/- 0.1%, control 12.7 +/- 0.1%; P < 0.01), and F-actin content reduced (diabetic 56.9 +/- 0.6%; control 61.7 +/- 0.4%; P < 0.0001) with a disrupted structure. CONCLUSIONS We find no evidence to support the idea that altered Ca(2+) homeostasis underlies the contractile deficit of diabetic cardiomyopathy. The slower action potential and reduced SERCA2a expression can explain the slower Ca(2+) transient kinetics in diabetic rats but not the contractile deficit. Instead, we suggest that the observed LV remodeling may play a crucial role.
منابع مشابه
Proteomic Analysis in Diabetic Cardiomyopathy using Bioinformatics Approach
Diabetic cardiomyopathy is a distinct clinical entity that produces asymptomatic heart failure in diabetic patients without evidence of coronary artery disease and hypertension. Abnormalities in diabetic cardiomyopathy include: myocardial hypertrophy, impairment of contractile proteins, accumulation of extracellular matrix proteins, formation of advanced glycation end products, and decreased le...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملThe effect of streptozotocin-induced diabetes in rats on cardiac contractile proteins.
In order to determine whether diabetic cardiomyopathy in rats is associated with altered contractile proteins, male and female rats were made diabetic with intravenous streptozotocin (STZ). Calcium ATPase activity of cardiac actomyosin was significantly decreased after 1 week of diabetes and was depressed by 60% by 2 weeks. Rats pretreated with 3-O-methyl glucose to prevent the hyperglycemia ca...
متن کاملHigh-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy
Diabetic cardiomyopathy refers to the manifestations in the heart as a result of altered glucose homeostasis, reflected as fibrosis, cellular hypertrophy, increased oxidative stress, and apoptosis, leading to ventricular dysfunction. Since physical exercise has been indicated as cardioprotective, we tested the hypothesis that high-intensity exercise training could reverse the cardiac maladaptat...
متن کاملProtection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats
BACKGROUND Intracellular calcium (Ca²⁺) coordinates the cardiac contraction cycle and is dysregulated in diabetic cardiomyopathy. Treatment with triethylenetetramine (TETA), a divalent-copper-selective chelator, improves cardiac structure and function in patients and rats with diabetic cardiomyopathy, but the molecular basis of this action is uncertain. Here, we used TETA to probe potential lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 57 شماره
صفحات -
تاریخ انتشار 2008